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ABSTRACT Small-molecule drugs have enabled the practice of precision oncology for geneti-
cally defined patient populations since the first approval of imatinib in 2001. Sci-

entific and technology advances over this 20-year period have driven the evolution of cancer biology, 
medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently 
design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer tar-
gets. The integration of these tools and their customization in the hands of skilled drug hunters will be 
necessary to enable the discovery of transformational therapies for patients across a wider spectrum 
of cancers.

Significance: Target-centric small-molecule drug discovery necessitates the consideration of multiple 
approaches to identify chemical matter that can be optimized into drug candidates. To do this suc-
cessfully and consistently, drug hunters require a comprehensive toolbox to avoid following the “law 
of instrument” or Maslow’s hammer concept where only one tool is applied regardless of the require-
ments of the task. Combining our ever-increasing understanding of cancer and cancer targets with the 
technological advances in drug discovery described below will accelerate the next generation of small-
molecule drugs in oncology.

INTRODUCTION
The approval of imatinib to treat chronic myelogenous 

leukemia in 2001 marked the beginning of the small-mole-
cule precision oncology era. In subsequent years, more than 
90 small-molecule targeted therapies have been approved 
to treat various cancers (1). Developing targeted therapies 
requires a hypothesis-driven mechanistic framework that 
contrasts the decades-old empirical approaches used to 
develop cytotoxic chemotherapies. Patient selection is based 
on molecular markers and directs therapies to the patients 
most likely to benefit, and pharmacodynamic biomarkers 

provide insight into target modulation, allowing a link to 
be drawn between the mechanism of action and efficacy. 
Establishing a pharmacokinetic/pharmacodynamic/efficacy 
relationship in appropriate preclinical models builds con-
fidence in target-mediated efficacy and provides thresholds 
for pharmacodynamic modulation that can be used as cri-
teria for compound optimization. Furthermore, applying 
correction factors for plasma protein binding across spe-
cies allows one to predict drug concentrations required for 
target engagement in humans that can be used for human 
dose projection and then tested using pharmacodynamic 
assays during dose escalation in phase I trials (2). Follow-
ing this framework provides a mechanistic link between the 
drug and target allowing the therapeutic hypothesis to be 
tested and provides confidence to advance a drug to later-
stage clinical development to confirm efficacy (reviewed in  
refs. 3, 4).

In spite of the progress made in developing targeted thera-
pies, only ∼7% of patients derive benefit (5). Developing effective 
therapies for broader patient populations, targeting this white 
space of medical need, will require adherence to the principles 
learned regarding target selection, the importance of potency 
and selectivity, and addressing resistance. New insights gained 
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in cancer biology have informed novel target identification, 
and the evolution of medicinal chemistry and data science has 
expanded the drug hunter’s toolbox to support the development 
of potent, selective drugs (Fig. 1). Although immuno-oncology 
has emerged as a critical field area in cancer treatment and drug 
discovery, there are still many lessons to be learned around target 
selection and translation to the clinic and therefore will not be 
covered here. This review will provide an overview of the major 
learnings with select examples and highlight recent advances in 
technologies used in small-molecule drug discovery that will be 
needed to deliver precision medicines to a wider population of 
patients with cancer.

ADVANCES OVER 20 YEARS IN SCIENCE AND 
TECHNOLOGY ACROSS CANCER BIOLOGY, 
CHEMISTRY, AND DATA SCIENCE
Cancer Biology

Since the discovery of the first human oncogenes and 
tumor suppressor genes in the 1980s, the amount of available 
information on the genetic drivers of cancer has exploded. 
Completion of the Human Genome Project in 2003 delivered 
the first nearly complete sequence of the human genome. 
This provided scientists with a normal reference that allowed 
the comparison of DNA sequences in cancers to the normal 
DNA sequence, dramatically improving our ability to identify 
the recurrent genetic alterations that contribute to tumor 
initiation and progression. Improvements in DNA sequenc-
ing technologies, including the initial introduction of mas-
sively parallel sequencing by Roche 454 and Illumina in 2004 
to 2006, followed shortly by technologies for DNA sequence 
enrichment that allowed focused sequencing of specific regions  

of interest, made genome-scale and whole-exome sequencing 
(WES) of normal and cancer samples feasible (6).

Armed with these next-generation sequencing technologies 
(NGS), large-scale efforts were initiated to profile the molecu-
lar alterations present in patient tumors and cancer cell lines. 
The Cancer Genome Atlas (TCGA) project, a joint effort 
between the National Cancer Institute and the National 
Human Genome Research Institute, was launched in 2006 
with “the aim of obtaining a comprehensive understanding of 
the genomic alterations that underlie all major cancers.” Sim-
ilar efforts were initiated in the United Kingdom as the Can-
cer Genome Project (7). Shortly thereafter, the International 
Cancer Genome Consortium (ICGC) was launched to coordi-
nate large-scale cancer profiling projects being conducted in 
numerous countries around the world (8). These efforts were 
accompanied by the development of novel computational 
and statistical approaches to distinguish functional genetic 
variants and candidate driver genes from the numerous pas-
senger mutations that accumulate in cancer cells (9, 10).

These profiling projects have expanded beyond cataloging 
genomic changes to characterize transcriptomic, proteomic, 
and epigenomic alterations as well. To date, these efforts have 
profiled tens of thousands of patient samples across more than  
30 different tumor types. This has led to the systematic iden-
tification and characterization of diverse types of genetic alter-
ations including substitutions, indels, fusions, copy-number 
alterations, complex structural variations, and somatic driver 
mutations in noncoding regions, as well as recurrent changes 
in mRNA splicing, chromatin architecture, and cancer-associ-
ated proteoforms (9, 11–13).

In addition to reconfirming the prevalence of mutations 
in known oncogenes and tumor suppressor genes, such as 

Figure 1. Scientific and technical advances in biology, chemistry, and data science over the past two decades have driven the development of novel 
first-in-class drugs and the evolution of best-in-class drugs in oncology. ctDNA, circulating tumor DNA; DepMap, Cancer Dependency Map; DL, deep 
learning; FEP, free energy perturbation; GEMM, genetically engineered mouse model; LTS MD, long time-scale molecular dynamics; PDB, Protein Data 
Bank; PROTAC, proteolysis-targeting chimeras. Herceptin is manufactured by Genentech, Gleevec by Novartis, Iressa by AstraZeneca, Zelboraf by 
Genentech, Xalkori by Pfizer, Imbruvica by Pharmacyclics/AbbVie and Janssen, Zykadia by Novartis, Tagrisso by AstraZeneca, Vitrakvi by Bayer, Lorbrena 
by Pfizer, and Lumakras by Amgen. 
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Table 1. Databases and visualization tools for molecular characterization of human tumors and tumor cell lines

Database Link Types of data/analyses
cBioPortal https://www.cbioportal.org/ Mutations, putative CNVs; mRNA expression, protein/

phosphoprotein level; survival analyses (173, 174)

COSMIC https://cancer.sanger.ac.uk/cosmic Curated somatic mutations across tumors and cell lines

ICGC Data Portal https://dcc.icgc.org/ Somatic mutations, somatic CNVs, somatic structural variants, 
germline mutations, DNA methylation, gene/protein 
expression, miRNA expression, exon junction; epidemiologic 
and clinical data

UCSC Genome Browser https://genome.ucsc.edu/ Mutations, CNVs, mRNA and miRNA expression, splice variants, 
DNA methylation, protein expression, clinical data

Genomic Data Commons https://gdc.cancer.gov/ Mutations, CNVs, mRNA and miRNA expression, structural 
variants, splice variants, DNA methylation, protein expression

FireBrowse http://firebrowse.org/ Interface for analyzing TCGA data

OncoKB https://www.oncokb.org/ Mutations, CNVs, fusions (175)

DepMap https://depmap.org/portal/ Genetic loss-of-function screening, pharmacologic 
dependencies, CCLE omics characterizations

canSAR.ai https://cansar.ai/ Integrates biology, chemistry, pharmacology, structural biology, 
cellular networks and clinical annotations, and applies 
machine learning approaches to develop predictions useful in 
drug discovery (117)

Abbreviations: CCLE, Cancer Cell Line Encyclopedia; CNV, copy-number variation; DepMap, Cancer Dependency Map.

KRAS, TP53, PTEN, PIK3CA, and EGFR, these sequencing 
efforts identified many new candidate driver genes and pro-
vided insights into novel oncologic processes. Positive selec-
tion for genetic alterations in transcriptional regulators, 
chromatin modifiers, metabolic pathway genes, and compo-
nents of the spliceosome suggests many potential therapeutic 
targets beyond the oncogenic kinases and their regulators 
that were targeted by the first generation of precision oncol-
ogy drugs (14, 15).

Numerous Web-based portals and visualization tools have 
been developed that allow the broader scientific community 
to access and analyze the vast amounts of “omics” data and 
associated clinical and biological data that have been gener-
ated though these large-scale profiling efforts (Table 1).

Large-scale sequencing efforts have revealed hundreds of 
potential driver genes, each with numerous different coding 
variants. Elucidation of the functional role of these genes in 
cancer and the phenotypic consequences of specific genetic 
alterations requires experimental manipulation in relevant 
model systems. In the past few decades, several new types 
of cancer models have been developed that recapitulate key 
features of tumor heterogeneity and the microenvironment, 
including but not limited to genetically engineered mouse 
models, patient-derived xenograft models, and patient-
derived organoid models. However, cancer cell lines remain 
the workhorse model system for studying cancer biology and 
characterizing the effects of genetic and pharmacologic per-
turbations due to their scalability and ease of manipulation.

The Cancer Cell Line Encyclopedia (CCLE) project began in 
2008 as a collaboration between the Broad Institute and the  
Novartis Institutes for BioMedical Research to comprehensively 

characterize the molecular features of a large panel of human 
cell lines. This collaboration was later joined by the MD 
Anderson Cancer Center and Harvard Medical School. Since 
its initiation, this effort has profiled over 1,000 cell lines 
from more than 30 cancer lineages at the genomic, transcrip-
tomic, proteomic, and metabolic levels. All, or a significant 
subset of the lines, have been profiled for whole-genome 
sequencing, WES, mRNA expression, RNA splicing, micro-
RNA expression, DNA methylation, histone modifications, 
reverse-phase protein array, and metabolites (16, 17). In 2018, 
the CCLE project became part of the Cancer Dependency 
Map (DepMap) program (discussed below); CCLE profiling 
data are available through the DepMap portal. The Well-
come Sanger Institute’s Catalogue of Somatic Mutations in 
Cancer (COSMIC) database is another useful resource with 
large-scale genomic data on tumors and tumor cell lines  
(Table 1).

Coupled with this extensive panel of well-characterized cell 
line models, the advent and adoption of a variety of functional 
genomics tools provided new approaches to characterize the 
biological role of the many cancer-related genes identified 
through these large profiling efforts. In the early 2000s, 
RNAi became a valuable and widely used tool to silence gene 
expression, thus allowing scientists to assess the function of 
any gene of interest in nearly any cell type. The use of siRNA  
and short hairpin RNA (shRNA) technologies to characterize 
the phenotypic consequences of knockdown of individual 
genes in cancer cell lines became the standard approach for 
evaluating the functions of candidate oncogenes and tumor 
suppressor genes. Genome-wide barcode shRNA screens cou-
pled to NGS became widely used for the identification of 
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new therapeutic targets in cancer (18–20). However, it soon 
became understood that the use of RNAi approaches resulted 
in the silencing of numerous unintended (off-target) tran-
scripts due to seed region sequence complementarity, leading 
to many false positives when assessing cancer dependencies in 
pooled screens and on an individual gene basis (21). To over-
come this limitation, researchers have made improvements in 
the promoter and microRNA context for shRNA expression 
and incorporated increased numbers of shRNA sequences per 
gene in large-scale screens (22–24).

In many instances, the use of “dirty” validation tools such as 
early RNAi modalities and nonselective tool compounds led to 
significant resources being deployed against the wrong targets. 
One example of an incorrectly validated target is the Maternal 
Embryonic Leucine Zipper Kinase (MELK), in which inhibition 
by RNAi and promiscuous kinase inhibitors showed strong 
effects on the viability of triple-negative breast and other 
cancer cell lines (25–28). On the basis of numerous publica-
tions on this dependency, several companies developed MELK 
inhibitors. However, later characterization using CRISPR–Cas9 
knockout and selective MELK inhibitors clearly showed that 
MELK activity is not required for cell proliferation, survival, or 
stress tolerance (29, 30). The precise role of MELK in cancer is 
still being explored. This highlights the importance of using 
selective inhibitors for target validation.

As the use of RNAi screening was exploding, scientists 
were characterizing the prokaryotic CRISPR–Cas system and 
developing tools for CRISPR–Cas9-mediated genome editing 
in mammalian cells (31–34). Although initially used to drive 
gene knockout, it was soon determined that this system could 
be exploited to knock in specific genetic alterations by provid-
ing a DNA sequence that the cell can use as a repair template 

to drive homology-directed repair, thus providing a means to 
determine the functional consequence of individual coding 
sequence variants in oncogenes and tumor suppressor genes. 
There are still instances where CRISPR-mediated editing has 
unintended “off-target” effects. For instance, CRISPR targeting 
of amplified genes can lead to viability effects resulting from 
excessive DNA damage rather than loss of gene function (35, 
36). Nevertheless, CRISPR technology has proven to have fewer 
overall off-target effects than RNAi and has revolutionized how 
cancer biologists approach target identification and validation.

To explore the role of every gene in nearly every cancer type, 
scientists at the Broad Institute (Project Achilles) and the Well-
come Sanger Institute (Project Score) initiated genome-wide 
CRISPR-Cas9 (and, previously, RNAi) loss-of-function screens 
in hundreds of molecularly characterized cell lines to system-
atically identify genotype-specific selective dependencies. The 
two institutes entered a strategic collaboration to accelerate 
these efforts, known as the DepMap, which has produced 
an integrated genome-wide screening dataset spanning more 
than 900 cell lines (37–39). This project also includes a large-
scale drug-sensitivity profiling project, PRISM, that utilizes a 
molecular barcoding method to pool cell lines in order to rap-
idly profile the viability effects of thousands of compounds 
across hundreds of cell lines (40). As of the summer of 2018, 
the CCLE also became part of the Broad DepMap Project. The 
DepMap portal (Table 1; Fig. 2), which is publicly accessible, 
integrates datasets from all of these screening efforts and the 
CCLE. DepMap has become a fundamental resource used by 
academia and industry alike for further hypothesis-driven tar-
get validation and targeted drug discovery efforts.

Pairing tumor genetic data with functional genomics data 
from DepMap and other large-scale screens has contributed 

Figure 2. Databases and visualization tools for molecular characterization of human tumors and tumor cell lines. DepMap visualization for the PIK3CA 
gene indicating that cell lines with functional/activating PIK3CA mutations are dependent on PIK3CA for proliferation (16, 176). RNA-seq, RNA sequenc-
ing; WGS, whole-genome sequencing; WT, wild-type.
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to the development of several novel therapies that are near-
ing or have entered clinical trials. The foundation for this 
approach has its origins in the identification of mutant BRAF 
as a validated oncogene. Activating BRAF mutations were 
first identified through sequencing tumor cell lines followed 
by functional validation in vitro and confirmation in a range 
of primary human tumor samples (41). This discovery invig-
orated efforts to develop selective BRAF inhibitors, which 
have transformed the treatment landscape in metastatic mel-
anoma, and also provided useful tools to gain insights into 
the mechanisms of activation of various BRAF mutations 
(42). Today, there are three BRAF inhibitors approved to treat 
a range of tumors with BRAFV600 mutations, including vemu-
rafenib, dabrafenib, and encorafenib.

The elucidation of synthetic lethal relationships has also 
been a major advancement coming out of the pairing of  
sequencing and functional genomics efforts and has led 
to many novel therapeutic targets. The vulnerability of 
MTAP-deleted cancer cells to inhibition of PRMT5 and 
other enzymes that support its function was first discovered 
through Project Achilles and Project DRIVE shRNA screening 
data (43, 44). MTAP is a key enzyme in the methionine salvage 
pathway, and the MTAP gene is frequently deleted in cancers 
due to its proximity to the CDKN2A tumor suppressor gene. 
These initial findings paved the way for deeper exploration 
of susceptibilities conferred by MTAP deletion (45, 46), and 
there are now several clinical trials underway in patients with 
MTAP-deleted cancer for agents targeting PRMT5 and its 
supporting enzymes, including the MTA-cooperative PRMT5 
inhibitors AMG-193, TNG462, and MRTX1719, and the 
MAT2A inhibitors IDE397 and AG-270 (47).

Importantly, synthetic lethality has opened the door to selec-
tive targeting of certain tumor suppressor gene mutations. PARP 
inhibitors provided the first clinical validation of this approach 
when the discovery of the synthetic dependency on PARP1 in 
BRCA1/2-deficient cancers led to the development of a number 
of PARP inhibitors, namely, olaparib, niraparib, rucaparib, and 
talazoparib. These medicines have revolutionized the treat-
ment of BRCA-mutant ovarian, breast, prostate, and pancreatic 
cancers (reviewed in ref.  48). Components of the BAF (SWI/
SNF) chromatin-remodeling complexes, such as SMARCA4, 
ARID1A, SMARCB1, and others, represent another class of 
tumor suppressor genes that are frequently lost or mutated in 
cancer. Together, deficiencies in BAF complex subunits occur 
in over 20% of human cancers. Synthetic lethal interactions 
between various components of the complex were identified 
through functional genomics screening efforts (reviewed in 
ref.  49). Several agents including SMARCA2 degraders and 
BRD9 degraders are currently in clinical trials in patients with 
SMARCA4 mutations and SMARCB1 loss, respectively. There 
are also efforts underway to target mutant tumor suppressors 
directly. For example, PC14586, a small-molecule structural 
corrector that restores wild-type function to the Y220C mutant 
p53 protein, is currently in clinical trials in patients carrying the  
TP53Y220C mutation.

More recently, scientists have expanded functional genom-
ics screens to use dual-gene CRISPR systems to explore the 
compensatory effects of paralog genes that underly selective 
digenic dependencies (50). Due to their sequence and struc-
tural homology, small-molecule drugs are often active across 

paralogs, and thus these digenic dependencies present new 
therapeutic opportunities.

Although the underlying basis for the selective dependency 
on many genes can be linked to specific mutations, such as 
increased dependency on KRAS in KRAS-mutant cell lines or 
the synthetic lethal dependency on SMARCA4 in SMARCA2-
deficient cell lines, as well as the examples discussed above, 
there are still numerous selective dependencies identified 
through these large-scale screens that have not been clearly 
linked to a specific molecular marker or profile. The rela-
tionship between genetic dependencies and cancer genomes 
is nonlinear, with the interplay between multiple genetic 
alterations often determining the degree of dependency on 
any one gene. Moreover, additional nongenetic factors such 
as alterations in the epigenome, transcriptome, proteome, 
and microenvironment of cancer cells may also contribute to 
selective dependency. As these genes represent potential tar-
gets for the development of novel therapies, it will be crucial 
to elucidate the unique cellular features (biomarkers) that 
predict dependence to better identify patients likely to benefit 
from new therapies. To this end, deep learning methods are 
being developed in an effort to predict gene dependencies or 
drug sensitivities from complex genomic and transcriptomic 
profiles (51, 52). It remains to be determined whether these 
approaches will lead to the identification of predictive bio-
markers for novel druggable targets.

The large number of patient tumors and cell lines that 
have been extensively profiled has led to the identification 
of both lineage-specific genetic alterations and driver genes 
as well as alterations that are shared across many cancer 
types. These pan-cancer analyses have revealed that cancers 
of different tissues can share the same drivers and be bio-
logically more similar to each other than to other tumors 
of the same tissue of origin. The similarities in driver gene 
dependencies across indications have also been borne out in 
large-scale functional genomics screens, ultimately changing 
the way we think about developing new therapies to include 
both indication-centric treatments and treatments that are 
appropriate for genetically defined subsets of patients across 
multiple indications.

The ability to both identify and experimentally manipu-
late the macromolecules that are altered in cancers using 
relevant model systems has led to the discovery of numerous 
potential therapeutic targets. New drugs against several of 
the oncogenic proteins identified through these efforts are 
now in clinical trials or have been recently approved. Still, 
other novel agents have not been as efficacious in patients, 
as predicted by preclinical models. This may be due to the 
presence of multiple driver mutations in a single tumor, 
niche-derived resistance factors, intratumoral heterogeneity, 
or other factors, all of which point to the need for drug com-
bination strategies. For instance, patients with colorectal can-
cer harboring KRASG12C mutations derive less benefit from 
KRASG12C inhibitors compared with patients with non–small 
cell lung cancer (NSCLC) who carry this mutation, likely 
due to high levels of EGFR activity in colorectal cancer (53). 
Clinical trials exploring the efficacy of KRASG12C inhibitors in 
combination with EGFR antibodies are currently underway, 
with early data indicating improved response rates with the 
combination (54–56).
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Selective biological dependency is only one factor when pri-
oritizing targets for drug discovery efforts. Perhaps equally 
important is the assessment of druggability. Many classes of 
oncogenic proteins remain challenging to drug using traditional 
approaches, but are beginning to be tackled through improve-
ments in medicinal chemistry strategies and data science tools.

Advances in Medicinal Chemistry
Medicinal chemistry has undergone a revolution over the 

past two decades. Multiple advances have come together to 
create a powerful toolbox that, when applied in concert, prom-
ises to help address targets hereto considered undruggable.

Property-Based Drug Design

One significant advance is the use of physicochemical 
properties to design small-molecule compounds most likely 
to have good drug-like properties. This approach has been 
termed property-based drug design. It traces its origin to 
the proposal of the “rule of 5” (Ro5) in 1997, which states 
that compounds with hydrogen bond (H-bond) donors  ≤5, 
H-bond acceptors  ≤10, molecular weight (MW)  ≤500, and 
logP (a measure of lipophilicity)  ≤5 are more likely to have 
good oral absorption than those that fail these rules (57). 
This concept was extended to allow for the prediction of 
other important drug-like properties such as central nervous 
system penetration (58), solubility (59), and safety liabilities 
(60). All the physicochemical properties for these relation-
ships can be calculated in silico based on the chemical struc-
ture at the design stage before synthesis, thereby increasing 
drug discovery efficiency and speed and reducing attrition.

Macrocycles

Over the last few decades, desirable drug targets have 
expanded to include those with shallow and extended binding 
pockets for which obtaining good binding activity is challeng-
ing. This has led to the exploration of the possibilities offered by 
compounds “beyond the rule of 5” (BRo5), with MW >500 and 
a higher number of H-bond donors and acceptors, capable of 
binding more tightly to these difficult pockets while retaining 
cell permeability and oral absorption (61). One of the main strat-
egies to accomplish this has been through macrocyclization. 
Macrocycles are present in multiple orally bioavail able BRo5 
natural products, such as rapamycin (ref. 62; see “Novel Drug 
Modalities: Molecular Glues and Degraders” section below), 
and there has been an effort to apply learnings from these com-
pounds as strategies for de novo–designed macrocycles (63). One 
finding has been that the preorganization offered by the ring 
structure can result in the energetic accessibility of conforma-
tions that allow intramolecular H-bond formation between 
H-bond donors and acceptors. These intramolecular H-bonds 
conceal some of the molecule’s polarity, thereby increasing 
membrane permeability. This strategy has seen a resurgence, in 
part due to a 2008 review (63), and has been extended to achieve 
good permeability and absorption with nonmacrocyclic BRo5 
compounds. Macrocyclization has multiple benefits beyond 
improving permeability, including increased binding affinity, 
selectivity, and metabolic stability, due to favoring the bioac-
tive conformation and disfavoring of other conformations that 
antitargets and metabolic enzymes can recognize. Hence, it is 
also utilized for these purposes in the Ro5 chemical space, as 

is the case in the ALK inhibitor lorlatinib (ref. 64; see “Potency 
Matters: ALK Inhibitors” section below) and in the recently 
approved JAK2/FLT3 inhibitor pacritinib (65).

Allostery

Allosteric ligands that modulate the activity of a protein by 
binding to a site distinct from the active or orthosteric site have 
seen a resurgence over the last decade. Some of the first allosteric 
modulators were developed against G protein–coupled recep-
tors. In recent years, there has been a renewed interest in them 
due to the many challenges in drug discovery that they can help 
address (66). Because they do not bind to the highly conserved 
orthosteric site, they offer the opportunity for selectivity against 
closely related proteins or for mutants against wild-type pro-
teins. Furthermore, allosteric modulators provide the opportu-
nity to tune the activity of the orthosteric ligand, allowing for 
partial inhibition or activation, or altered downstream signaling, 
and can help address resistance due to mutations in the orthos-
teric site. For example, the BCR–ABL inhibitor asciminib binds 
to the allosteric myristate site and maintains activity against 
orthosteric inhibitor–resistant ATP-site mutations (ref.  67; see 
“Targeting through Orthosteric and Allosteric Mechanisms: 
BCR–ABL” section below). Significantly, allosteric modulators 
can help tackle challenging biological targets such as those with 
poor orthosteric binding sites, including some protein–protein 
interactions, and targets with high-affinity endogenous ligands 
that would be difficult to displace with inhibitors. An example is 
the discovery of SHP099, which inhibits SHP2 phosphatase by 
interacting with an allosteric site (68) and is often credited for 
reinvigorating this target class, as selective orthosteric inhibition 
of phosphatases with drug-like molecules is challenging. The 
MEK inhibitor trametinib binds in an allosteric site adjacent 
to the ATP-binding site and further illustrates the concept (69). 
The disadvantages of pursuing an allosteric approach include 
the difficulty in identifying these sites in targets of interest, 
particularly since some may be cryptic—that is, only present in 
specific protein conformations. Furthermore, some allosteric 
sites may not affect the desired function once identified. The 
advantages outlined above, progress in understanding allosteric 
modulation mechanisms, the increased availability of struc-
tural biology information, and computational approaches to 
model protein dynamics have significantly bolstered this area. 
KRASG12C inhibitors that bind to a cryptic allosteric site adja-
cent to the nucleotide-binding pocket epitomize this class of 
compounds and are further discussed below (ref. 70; see “Cova-
lent Binders” and “Covalent Targeting to Reveal Cryptic Drug-
Binding Pockets: KRASG12C” sections).

Fragment-Based Drug Discovery

Fragment-based drug discovery (FBDD), the identification 
of relatively low-MW compounds that bind efficiently to their 
biological targets, and can be evolved into higher MW com-
pounds with greater affinity and drug-like properties, has 
become a prevalent approach in drug discovery (71). FBDD 
was first practically demonstrated in 1996 by Abbott scien-
tists in the discovery of FKBP ligands (72) and has since been 
applied to a multitude of targets. The physicochemical proper-
ties of the compounds screened in FBDD have been defined 
as the “rule of 3,” which includes the use of fragments with 
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MW  ≤300 (73). Because these fragments are small and rela-
tively simple in structure, it is possible to cover, with a relatively 
small library of a few thousand compounds, a similar breadth 
of chemical space as with a traditional, significantly larger 
collection of higher-MW compounds. Fragment screens are 
usually conducted using biophysical techniques to detect hits 
with relatively weak binding affinity, which are then evaluated 
using ligand efficiency calculations. This metric normalizes 
their binding affinity to their size (74). The initial fragment 
hits are then elaborated to potent molecules either by merging 
two fragments or fragment growth through the attachment 
of additional functionality. The process is typically guided by 
X-ray crystallography or other structural biology techniques. 
An alternative process involves screening by high-throughput 
X-ray crystallography and has the benefit of providing struc-
tural information to guide hit optimization directly from the 
screen (75). This approach has been successfully optimized for 
academic and industrial applications at the XChem facility at 
Diamond Light Source (76). Due to its efficient coverage of 
chemical space, FBDD enables hit finding against challenging 
targets and the identification of allosteric sites and ligands, 
such as in the discovery of the BCR–ABL inhibitor asciminib 
(ref.  67; see “Targeting through Orthosteric and Allosteric 
Mechanisms: BCR–ABL” section below). In addition to asci-
minib, several oncology-approved drugs have originated from 
fragments. They include the first fragment-based approved 
drug, the BRAF inhibitor vemurafenib (77), the BCL-2 inhibi-
tor venetoclax, which originated with a fragment identified 
using the original nuclear magnetic resonance (NMR) screen-
ing approach (78), and the FGFR inhibitor erdafitinib (79). In 
addition, capivasertib, an AKT inhibitor in phase III clinical 
trials, originated independently from a fragment similar to 
vemurafenib’s original fragment (80, 81).

Degraders

Identifying degraders, compounds that cause the selective 
degradation of a protein of interest (POI), has emerged as 
a promising strategy for drugging targets for which devel-
oping functional inhibitors is difficult or insufficient (82). 
Molecular glues are small molecules capable of stabilizing the 
interactions between two proteins through the formation of a 
ternary complex to alter their function (83). Glue degraders, a 
subclass of molecular glues, have emerged as a promising type 
of monovalent degraders (84). They are compounds that bind 
to an E3 ubiquitin ligase and induce or enhance its interaction 
with a POI, leading to ubiquitination and proteasomal degra-
dation of the POI. Typically, they do not bind independently 
to the POI. The prototypical glues are the immunomodula-
tory imide drugs (IMiD), such as thalidomide, which were dis-
covered serendipitously. They bind the cereblon E3 ligase and 
induce degradation of the IKAROS family zinc finger proteins, 
among others. Unfortunately, the de novo identification of glue 
degraders for a specific POI has proven challenging.

Proteolysis-targeting chimeras (PROTAC), a more modular 
type of degrader, were first described in 2001 (85). PROTACs 
are bifunctional molecules that contain a binder to an E3 ubiq-
uitin ligase, a binder to the POI, and a linker that joins the two 
(86). The PROTAC thus forms a ternary complex with the E3 
ligase and POI, bringing the two proteins into proximity and 
allowing for ubiquitination and degradation of the POI. One 

major advantage of PROTACs is that the binder to the POI 
can be “silent” or devoid of functional activity, as PROTACs 
can exploit favorable silent allosteric sites. Other advantages, 
which they share with glue degraders, include their catalytic 
nature, which can lower the requirement for strong affinity for 
the POI and for high in vivo exposure, their possible extended 
duration of action, and the opportunity for novel pharmacol-
ogy arising from degradation as opposed to specific func-
tional inhibition. PROTAC disadvantages include the current 
need for empirical optimization despite their modularity and 
typically BRo5 characteristics. Despite this, the application of 
BRo5 approaches has resulted in 15 oral PROTACs, spanning 
nine different targets, advancing to clinical trials (ref. 86; see 
“Molecular Glues and Degraders” section).

Covalent Binders

Another area of significant progress has been the rational 
design of covalent small-molecule drugs (87, 88), resulting in 
more than 40 approved covalent drugs to date. Covalent com-
pounds bind to their biological targets in a two-step process. 
First, they bind reversibly through specific noncovalent interac-
tions that place the ligand’s reactive functionality close to the 
target’s reactive amino acid, enabling subsequent covalent bond 
formation between the ligand and target. The initial specific 
noncovalent binding requirement is critical to achieving selec-
tivity for the desired target. Although covalent drugs have been 
in use for a long time, it has only recently been demonstrated 
that one can, by design, add a reactive electrophilic group to an 
existing noncovalent ligand. This approach was first applied 
to the tyrosine kinase EGFR (ref. 89; see “Targeting Resistance 
Mutations: Four Generations of EGFR Inhibitors” section) and 
subsequently to multiple other targets. Notably, the increased 
binding affinity obtained with covalent compounds has been 
utilized to address targets that have proven challenging using 
noncovalent ligands, as with KRASG12C inhibitors (90). The 
KRASG12C inhibitor example used a different approach than 
that used in EGFR, which is based on FBDD and involves first 
identifying a covalent fragment hit and then evolving it to a 
higher-MW compound with enhanced noncovalent interac-
tions with the target (70). This work also demonstrates the util-
ity of this approach for identifying novel allosteric or cryptic 
pockets (see “Covalent Targeting to Reveal Cryptic Drug-Bind-
ing Pockets: KRASG12C” section below). Most of the designed 
covalent drugs, including those against EGFR and KRASG12C, 
target cysteine residues, as these can have high reactivity. Still, 
efforts are ongoing to expand them to other potentially reactive 
amino acids such as lysine and tyrosine. The potential advan-
tages of covalent ligands include the ability to obtain good 
potency even in relatively shallow binding pockets, enhanced 
selectivity in cases in which the covalently bound amino acid 
residue is unique to the desired target, extended duration of 
action after the inhibitor has been cleared from the body, and 
reduction in off-target toxicity by rapid and extended target 
engagement. One common criticism of covalent compounds 
is the possibility of off-target or idiosyncratic toxicity arising 
from the covalent modification of undesired proteins.

Developments in the area of chemical proteomics and par-
ticularly in competitive activity-based protein profiling (ABPP) 
have greatly enabled covalent drug discovery (91). Identifying 
covalent fragment hits, as in the KRASG12C case, promises to 
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provide good starting points for covalent drugs against chal-
lenging targets. Although initially focused on investigations of 
enzyme families, ABPP was first utilized in 2016 to identify cova-
lent fragment ligands for cysteine residues across the proteome, 
leveraging advances in higher throughput mass spectroscopy 
(MS; ref. 92). This approach moved covalent fragment discovery 
from a target-focused activity to one that could be done broadly 
across the proteome to identify allosteric and cryptic pockets for 
challenging targets (93). The approach relies on incubating live 
cells (or cell lysate) with a compound, followed by treatment of 
each sample with a cysteine-reactive probe that covalently binds 
to accessible cysteines not previously modified by the com-
pound. Following proteolysis, the probe is used to pull down the 
peptides containing probe-modified cysteines, and the samples 
are injected into the MS. The hits are identified by a loss of 
signal in any of the peptide-probe MS peaks in the compound-
treated samples relative to the control. MS-enabled competitive 
ABPP finds ligandable hotspots across the proteome and identi-
fies covalent fragment hits against some of these sites that can 
be elaborated to covalent drugs. The technique can also deter-
mine the selectivity of covalent compounds against cysteines 
across the proteome to help reduce their off-target or idiosyn-
cratic toxicity risk. Notably, this technique allows for screening 
targets in their native cellular context. Furthermore, the method 
can identify covalent E3 ligands that could be transformed into 
covalent PROTACs or molecular glues.

Chemical Libraries and Probes

Enhancements in compound screening collections have also 
been a critical enabling tool. This extends to better curated high-
throughput sequencing collections, target-focused collections, 
and well-designed noncovalent and covalent fragment libraries 
(94). DNA-encoded libraries (DEL), first described conceptu-
ally in 1992 (95), have become a valuable method of identifying 
binding hits for challenging targets, and there are now at least 
three compounds in clinical development targeting sEH, RIP1, 
and ATX that originated from DEL hits, although these are all 
being developed for nononcology indications (96, 97). They 
are extensive combinatorial small-molecule libraries in which 
each compound is attached to a DNA oligomer that encodes 
the identity of the small-molecule. They are screened by affin-
ity capture with the target protein, and the hits are decoded 
by PCR amplification and sequencing of the attached DNA 
tag. Because of their very large size, DELs can be helpful when 
smaller libraries have not afforded hits. The binders they identify 
can be screened for functional activity or used as the POI binder 
in a PROTAC approach. Covalent DELs can also identify hits to 
enable covalent programs, demonstrating their versatility.

Chemical probes are well characterized and selective small-
molecule modulators of a specific protein that are useful for 
exploring the biological function or role of its target, and for 
validating or invalidating the target for drug discovery. They 
are complementary to genetic approaches. Unfortunately, the 
broad use of low-quality chemical probes, particularly with low 
selectivity, has led to erroneous conclusions in the literature. 
The Chemical Probes Portal (https://www.chemicalprobes.org/)  
was established as an expert-curated resource for high-quality 
chemical probes for usage in biomedical and drug discovery 
efforts (98, 99) and exemplifies the benefits of the close integra-
tion of chemistry with biology.

Advances in Data Science
Many of the advances in medicinal chemistry have been 

accelerated by advances in structure-enabled drug discovery 
approaches. The significant increases in computational power, 
including the development of graphical processing units 
(GPU), have enabled the implementation of more sophisti-
cated algorithms and the execution of larger-scale experiments.

The Protein Data Bank, established in 1971, currently con-
tains  >200,000 entries covering X-ray crystallography struc-
tures and also structures determined by other techniques such 
as NMR, cryo-electron microscopy (cryoEM), and other dif-
fraction methods (100). Since then, the receptor-based drug 
design field quickly emerged as a tool in drug discovery and 
evolved through increases in computational power (101, 102) 
and available structural information. The first publication on 
a small-molecule docking algorithm appeared in 1982 (103). 
With the sequencing of the human genome, there was renewed 
interest in assigning function to every protein in the human 
genome to understand human disease and enable drug discov-
ery. To support those efforts, in the early 2000s, the Structural 
Genomics Consortium was started as a public–private partner-
ship to solve crystal structures of novel proteins (104, 105).

Computational tools are now routinely used to find novel 
chemical matter for targets of interest via virtual screen-
ing or scaffold hopping, and for the structure-guided opti-
mization of existing small-molecule binders to targets of 
interest to further enhance potency and/or selectivity over 
undesirable off-targets.

Recently, the enumeration of ever-larger chemical libraries 
(106, 107) has emerged, using available building blocks and 
precedented chemical reactions—Enamine REAL and the WuXi 
AppTec virtual library. These collections now cover billions of 
structures, which can be reliably synthesized within short 
time frames of 2 to 3 weeks at a reasonable cost. Although 
ligand-based approaches can be utilized to analyze these large 
collections comprehensively, screening these collections using 
receptor-based virtual screening requires too much computing 
time. In order to address those constraints, a combination of 
docking and docking-based machine learning approaches is 
being explored to prioritize compounds for testing (108, 109).

Deep learning has also enabled the development of gen-
erative chemistry engines to derive novel chemical structures 
based on existing chemical space, like, for example, those 
embedded in ChEMBL (110) or ZINC (111). Generally, either 
SMILES representations or graphical representations are used 
to describe the molecules, and different architectures can be 
used to generate novel molecules (112–115). In order to gener-
ate compounds within a specific chemical space of biological  
interest, the generic model is fine-tuned using compounds 
with the desired property of interest (115, 116). A more focused 
resource for cancer-centric drug discovery is canSAR (https://
cansar.ai; Table 1), which integrates medicinal chemistry infor-
mation with structural biology data and multiomic data (117).

In addition to advances in docking algorithms and integra-
tion of deep learning approaches, predictions of free energies 
of binding of small molecules to protein targets have become 
significantly more accurate in the last decade. Methods like free 
energy perturbation (FEP) and thermodynamic integration (TI) 
have benefited from improvements in molecular force fields, 
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development of enhanced sampling methods, and utilization of 
GPUs instead of central processing units to make these meth-
ods important new tools in drug discovery (118, 119).

With the advances in force fields and hardware, molecu-
lar dynamics simulations and enhanced sampling methods 
have also become important tools for understanding protein 
dynamics–function relationships and small-molecule bind-
ing to protein targets (120–123). The increased simulation 
times that are now feasible have enabled reproduction of 
compound binding processes to cryptic binding sites (124–
126) and the prediction of unexplored sites.

There has been a long-standing interest in the protein fold-
ing problem, or the question of how the amino acid sequence 
of a protein determines its 3D structure (127). Protein struc-
ture prediction methods have been an area of considerable 
interest, and since 1994, the biannual Critical Assessment of 
Techniques for Protein Structure Prediction (CASP) event has 
been held. CASP allows different groups to test their methods 
objectively on unpublished structures (128). With the incorpo-
ration of novel deep learning approaches, the DeepMind team 
developed AlphaFold (129) and placed first in CASP13 (130). 
CASP14 then saw multiple groups iterate on AlphaFold’s 
advances, resulting in the development of RosettaFold (131), 
improvements to MULTICOM (132), and further development 
by DeepMind and the release of AlphaFold2 (129). Since the 
release of AlphaFold2, predicted structures for the complete 
human proteome and other species have become readily avail-
able. The utility of these models has been assessed in virtual 
screening (133) and FEP (134), and also to better define con-
struct boundaries for crystallography and help resolve cryoEM 
and X-ray structures (135). However, there are many targets 
and domains of proteins that are poorly characterized experi-
mentally, and/or have a significant amount of disorder to 
them, in which these approaches can provide little insight. In 
addition, proteins are highly dynamic, and the characterization 
of multiple dynamic states is poorly captured (135).

EVOLUTION OF SMALL-MOLECULE 
CREATION: LESSONS LEARNED FROM 
INDIVIDUAL ADVANCES
Targeting through Orthosteric and Allosteric 
Mechanisms: BCR–ABL

ABL1 is a receptor tyrosine kinase and proto-oncogene in 
chronic myelogenous leukemia (CML). Translocation between 
the ABL1 gene and the breakpoint cluster region (BCR) gene 
generates the BCR–ABL oncogene and is pathognomonic for  
CML (Philadelphia chromosome). Targeting BCR–ABL in 
CML with imatinib represents the foundational example of 
small-molecule precision oncology: In the first randomized 
phase III study, imatinib treatment led to improvements 
in complete cytogenic responses (76.2%) compared with 
the interferon-alpha plus cytarabine combination (14.5%; 
ref.  136). Imatinib is an ATP-competitive (i.e., orthosteric) 
inhibitor of ABL1 kinase and provided critical proof of 
concept for targeting a kinase, demonstrating that a small-
molecule drug can compete with millimolar concentrations 
of ATP in the cell, and that sufficient selectivity could be 
achieved such that only a narrow spectrum of kinases are 
inhibited, enabling a wide therapeutic index.

Targeting BCR–ABL in CML also provided a benchmark 
for follow-on inhibitors that demonstrated additional key 
concepts in small-molecule precision oncology, such as the 
importance of potency, selectivity, and the utility of drugs 
with orthogonal mechanisms of action that can overcome 
resistance. Clear evidence of the impact of improved potency 
and selectivity was demonstrated through head-to-head stud-
ies of nilotinib, another ATP-competitive inhibitor of BCR–
ABL, versus imatinib. Depending on the assay used, nilotinib 
is  ∼10- to 30-fold more potent than imatinib on BCR–ABL 
but roughly equipotent on cKIT and PDGFRβ (137). In a 
phase III study, nilotinib treatment led to a higher complete 
molecular response rate (26% at 300 mg twice/day and 21% at 
400 mg twice/day) compared with imatinib (10% at 400 mg 
daily) and fewer patients progressing to accelerated or blast 
phase and fewer CML-related deaths (138).

Although additional orthosteric BCR–ABL inhibitors have  
been developed in CML, the acquisition of resistance muta-
tions is a universal challenge (reviewed in ref.  139). A novel 
approach to overcome this issue was discovered by a team at 
Novartis that demonstrated that BCR–ABL could be inhib-
ited through an allosteric mechanism by optimizing a small 
molecule to occupy the myristoyl pocket, locking the kinase 
in an inactive conformation (140). This concept led to the 
development of asciminib (ABL-001), which specifically tar-
gets the ABL myristoyl pocket, and preclinical studies dem-
onstrated its ability to inhibit the most common and broadly 
resistant mutant to orthosteric inhibitors, BCR–ABLT315I.  
Although preclinical studies suggested that asciminib-resist-
ance mutations in BCR–ABL could arise, these mutants were 
effectively inhibited by imatinib, and the combination of 
asciminib  +  imatinib completely prevented the emergence 
of resistance mutations in a mouse tumor xenograft model of 
CML (141). Asciminib received accelerated approval to treat  
patients with CML who have failed two or more prior BCR–ABL 
inhibitors or in patients who have a BCR–ABLT315I mutation. 
Asciminib is also being tested in combination with imatinib 
(e.g., NCT03578367) and nilotinib (e.g., NCT03874858) in  
human clinical trials to test the hypothesis that combining 
orthogonal mechanisms of action will further delay or pre-
vent the emergence of resistance.

Overall, the journey of targeting BCR–ABL with small mole-
cules and incrementally improving patient outcomes spans 
more than 20 years and exemplifies part of the evolution of 
small-molecule discovery (139). Prior to the introduction of 
imatinib, patients were treated with interferon and chemo-
therapy and mostly progressed rapidly from the chronic 
phase and died in blast crisis, while today CML is a chronic 
disease that most patients can live with for decades, with 
about 5% to 10% achieving treatment-free remission after ces-
sation of tyrosine kinase inhibitor (TKI) therapy (142).

Potency Matters: ALK Inhibitors
ALK is a receptor tyrosine kinase, and fusions between the 

ALK gene and nucleophosmin (NPM) or echinoderm micro-
tubule-associated protein-like 4 (EML4) occur in approxi-
mately 60% of anaplastic large cell lymphomas and 2% to 
7% of NSCLC. These fusions lead to enhanced dimerization 
and activation of the ALK kinase domain and drive onco-
genic transformation. The discovery of ALK translocations in 
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NSCLC led to the evaluation of the multitargeted ALK kinase 
inhibitor, crizotinib, and validated EML4–ALK as a therapeu-
tic target. In a phase I study in patients with ALK+ NSCLC, 
crizotinib treatment resulted in a 47% response rate (RR), 
and in a subsequent randomized phase III trial, crizotinib 
treatment resulted in a 74% RR and median progression-free 
survival (PFS) of 10.9 months, which compared favorably 
with chemotherapy (45% and 7 months; ref. 143). Crizotinib 
is an orthosteric kinase inhibitor that was initially developed 
as a MET inhibitor and in fact inhibits several other kinases 
at similar concentrations as ALK and MET, leaving open the 
possibility to create second-generation inhibitors with greater 
potency against ALK. For example, the cellular potency of 
alectinib is approximately 4-fold more potent than crizotinib 
(∼10 nmol/L vs.  ∼40 nmol/L IC50; ref.  144), and in a head-
to-head phase III trial, alectinib provided a higher RR and 
improved median PFS versus crizotinib (92% vs. 79% and 34.1 
vs. 10.2 months; refs. 145, 146). With the therapeutic benefit 
of ALK inhibitors clearly established, the macrocycle small-
molecule lorlatinib (see “Advances in Medicinal Chemistry” 
section) was developed with best-in-class potency against 
ALK (∼2 nmol/L cellular IC50; ref. 144) and in a phase III trial 
demonstrated improved efficacy over crizotinib with an RR 
of 76% versus 58% (147) and 3-year PFS of 64% versus 19% 
(148). The improvement in clinical efficacy demonstrated 
by lorlatinib compared with crizotinib clearly demonstrates 
the potential for a more potent and target-optimized small-
molecule inhibitor to displace an earlier-generation inhibitor 

in the first-line setting and represents a major advance for 
patients with NSCLC whose tumors express ALK transloca-
tions (Fig.  3). Although the case for increased potency can 
be made with ALK inhibitors and other targeted therapies, 
sufficient selectivity versus off-targets, especially for kinase 
inhibitors, must be maintained in order to realize improve-
ments in therapeutic benefit.

Targeting Resistance Mutations: Four Generations 
of EGFR Inhibitors

EGFR is a receptor tyrosine kinase that plays a critical role 
in epithelial cell proliferation and homeostasis. Activating 
mutations in EGFR occur in approximately 20% of NSCLC 
tumors, the vast majority of which consist of exon 19 deletions 
(EGFRExon19del) or the L858R mutation (EGFRL858R). Erlotinib 
and gefitinib are ATP-competitive EGFR inhibitors that were 
first approved to treat NSCLC based on the hypothesis that 
EGFR overexpression drives tumors in this indication. How-
ever, it was soon recognized that only patients with EGFR-
mutant tumors realize clinical benefit (149, 150). Although 
the clinical benefit in the EGFR-mutant patient population 
was confirmed in randomized clinical studies (151, 152), the 
majority of patients still relapsed in less than 1 year. As with 
other small-molecule targeted therapies, tumors developed 
resistance and the most frequent mechanism was through 
the acquisition of the T790M gatekeeper mutation in the 
EGFR ATP-binding pocket (153, 154). This mutation causes 
resistance due to increasing the affinity for ATP (lowers ATP 

Figure 3. The evolution of ALK inhibitors to treat ALK+ NSCLC. Kaplan–Meier plot illustrating the improvement in PFS of crizotonib vs. chemotherapy (143) 
on the left and lorlatinib vs. crizotinib (147) on the right. Reprinted with permission from NEJM. CI, confidence interval; SBDD, structure-based drug design.
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Km), making it more difficult for erlotinib or gefitinib to bind. 
Although second-generation EGFR inhibitors were developed,  
differentiated from first-generation inhibitors through their 
covalent mode of binding, these compounds failed to effec-
tively inhibit the T790M mutant.

The third-generation EGFR covalent inhibitor osimerti-
nib was specifically designed to inhibit EGFRL858R;T790M and 
EGFRExon19del;T790M. In a phase II clinical trial in patients who 
relapsed on a prior EGFR inhibitor with the T790M mutation, 
osimertinib treatment resulted in a 70% RR, providing clinical 
proof of concept (155). Osimertinib was subsequently tested 
head-to-head against gefitinib or erlotinib in first-line NSCLC 
patients with EGFR mutations and demonstrated a compara-
ble RR to the first-generation inhibitors (80% vs. 76%) but sig-
nificant improvements in median PFS (18.9 vs. 10.2 months) 
and overall survival (38.6 vs. 31.8 months; refs. 156, 157).

First-line osimertinib treatment represents a significant 
improvement in therapeutic benefit to patients; however, 
acquired resistance to osimertinib still occurred through 
a range of mechanisms but most notably not through the 
acquisition of T790M (reviewed in ref.  158). Some of the 
on-target mechanisms of resistance represent opportunities 
for the development of next-generation EGFR inhibitors. 
For example, the EGFR C797S mutation causes resistance 
to osimertinib through mutation of the cysteine to which 
the drug covalently binds, opening the opportunity for next-
generation noncovalent EGFR inhibitors. Fourth-genera-
tion EGFR inhibitors such as BLU-945 selectively inhibit 
EGFRL858R;T790M by binding in the orthosteric pocket through 
a noncovalent mechanism and therefore have the potential 
to treat osimertinib-resistant tumors with a C797S mutation 
(159). BLU-945 (NCT04862780) and several other so-called 
fourth-generation EGFR inhibitors are currently undergo-
ing preclinical and clinical development. The development 
of drugs that inhibit different resistance mutations provides 
the potential to move combinations of EGFR inhibitors into 
first-line treatment and potentially prevent the emergence of 
on-target resistance mechanisms, similar to the strategy for 
ABL inhibitors as described above.

Covalent Targeting to Reveal Cryptic Drug-Binding 
Pockets: KRASG12C

KRAS is a small GTPase that transmits growth factor recep-
tor signals from the cell membrane to intracellular signal 
transduction cascades, including the RAF–MEK–ERK mito-
gen-activated protein kinase pathway and the PI3K pathway. 
KRAS is the most frequently mutated oncogene, occurring in 
approximately 16% of all human cancers, and has been the 
focus of drug discovery efforts for more than 25 years. How-
ever, due to its high affinity for GTP and the lack of an alterna-
tive pocket, it remained an undruggable target until the focus 
turned to the creation of KRASG12C mutant–specific inhibitors 
through covalent binding to the mutant cysteine (70). The 
identification of cysteine-reactive fragments that selectively 
bind the mutant cysteine revealed a shallow cryptic pocket 
adjacent to the nucleotide-binding pocket. This seminal work 
launched multiple drug discovery efforts, culminating in the 
development and approval of sotorasib, the first inhibitor of 
KRASG12C in patients with NSCLC. Approval was based on a 
single-arm, phase II study in second-line KRASG12C-mutant 

NSCLC patients previously treated with standard therapies 
in which sotorasib demonstrated a 37% RR, a median PFS of 
6.8 months, and median overall survival of 12.5 months (55). 
A second KRASG12C inhibitor, adagrasib, which has a similar 
mechanism of action, was also recently approved in second-
line KRASG12C-mutant NSCLC patients and demonstrated 
comparable efficacy: a 42.9% RR, a median PFS of 6.5 months, 
and a median overall survival of 12.6 months (160).

The successful development of inhibitors against KRASG12C 
spurred the discovery of drugs that selectively target KRASG12D 
noncovalently (161), KRASG12R covalently (162), and wild-
type KRAS noncovalently (163) using inhibitors that bind the 
same cryptic pocket. Leveraging cysteine-reactive small mol-
ecules to identify cryptic pockets is an approach that could 
be applied to other difficult-to-drug targets and encompasses 
the rapidly growing field of covalent chemical proteomics 
(92). The ability to screen cysteine-reactive fragment probes 
or more drug-like small molecules in live cells has the poten-
tial to identify cryptic pockets on thousands of proteins that 
were previously considered undruggable (see “Advances in 
Medicinal Chemistry” section).

Novel Drug Modalities: Molecular Glues 
and Degraders

Small molecules that promote the formation of a ternary 
complex between two proteins to alter the function or induce 
the degradation of a target protein create the potential for 
novel mechanisms of action against target proteins that are 
otherwise difficult to drug. A thorough review of the field is 
beyond the scope of this article, but the reader can refer to 
recent review articles (83, 86). Instead, we will provide a brief 
history of small-molecule glues and degraders with examples 
of oncology drugs or drug candidates in this class that have 
been approved or are currently undergoing clinical trials.

The natural product rapamycin was one of the first molecu-
lar glues to be discovered, inducing a ternary complex between 
mTOR and FKBP12, resulting in the allosteric inhibition of 
mTOR activity (reviewed in ref. 62). Rapamycin analogues with 
improved drug-like properties such as temsirolimus and everoli-
mus have been approved to treat renal cell carcinoma, with the 
latter also approved to treat HR+/HER2− breast cancer and 
pancreatic neuroendocrine tumors. Recently, a bisteric inhibi-
tor of mTORC1 has been described, which is composed of an 
FKBP12 binding moiety linked to an orthosteric mTOR kinase 
inhibitor (164), and a clinical candidate, RMC-5552, is under-
going a phase I clinical trial in solid tumors (NCT04774952). 
Bifunctional inhibitors of KRASG12C have also been described, 
which create a ternary complex with FKBP12 or cyclophilin A 
(165), and a phase I trial has recently started with RMC-6236, a 
so-called tricomplex inhibitor that generates a ternary complex 
with KRAS and cyclophilin A (NCT05379985).

The discovery of the mechanism of action of thalidomide, a 
drug used to treat multiple myeloma, involves the formation of 
a ternary complex between members of the IKAROS family of 
transcription factors (IKZF1 and IKZF3) and the E3 ubiquitin 
ligase cereblon (166), leading to the degradation of IKZF1/3. 
This discovery accelerated the emergence of new classes of 
drugs that function as monovalent degraders through cere-
blon engagement. For example, monovalent degraders of 
GSPT1 such as CC-90009 (NCT02848001) and MRT-2359  
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(NCT05546268) or IKZF2 such as DKY709 (NCT03891953) 
are currently undergoing clinical trials, and major efforts 
are ongoing to identify new chemical matter and new E3 
ligases that can function together as molecular glue degraders 
(reviewed in ref. 167). This mechanism has the advantage of not 
requiring a drug-binding pocket in the POI, but rather relies on 
the generation of a drug-binding pocket at the interface of the 
two proteins. Thalidomide derivatives have also been used as 
cereblon engagers in heterobifunctional degraders (PROTAC), 
in which they are linked to a small molecule that binds to the 
POI. Such heterobifunctional degraders can also be generated 
using small molecules that engage other E3 ubiquitin ligases 
such as VHL, IAP, or MDM2. There are numerous heterobi-
functional degraders in clinical deve lopment targeting a wide 
range of proteins including BCL-xL, BRD9, BTK, EGFRL858R, 
BRAFV600E, ER, AR, TRK, and IRAK4 (reviewed in ref. 86).

INTEGRATION OF THE TECHNOLOGICAL 
TOOLBOX

These technology advances over the past 20 years have 
dramatically expanded the drug hunter’s toolbox to address 
an equally expanding universe of validated, driver oncology 
targets. Maximally leveraging these technologies requires an 
integrated and synergistic approach, not simply deploying 
them in a linear, one-at-a-time manner. For example, advanced 

chemical proteomics tools can uncover cryptic pockets in 
proteins (93), but these pockets, while ligandable by reactive 
probes, may not be large enough or open long enough to make 
them druggable. Motion-based computational drug discovery 
may separately reveal transient pockets in such proteins (125). 
Combining these technologies allows one to understand when 
and where these reactive cryptic pockets become available 
for small-molecule ligands, and once identified, how best to 
advance the structure–activity relationship, aided by structural 
biology and computational techniques, to provide additional, 
noncovalent points of interaction to increase the potency 
and selectivity of the emerging drug-like leads. Additionally, 
machine learning tools that augment the drug hunter’s expe-
rience and skill to accelerate specific aspects of drug design 
have now begun to make their way into the toolbox (112–116). 
When machine learning is integrated with chemical proteom-
ics, for example, the identification of cryptic pockets and the 
features of ligands that can bind in these pockets may become 
predictable with sufficient starting datasets. Deployment of a 
single tool (“hammer”) against a challenging drug target may 
yield suboptimal candidate design, if at all, as not all drug 
design challenges are a “nail” (Maslow’s hammer concept). As 
these technologies become more commonplace in the indus-
try, we expect their integrated use (“toolbox”) to become more 
and more critical to targeting a wide range of oncology targets 
to arrive at high-quality compound designs (Fig. 4).

Figure 4. Integration of biology, chemistry, and data science is required to support the identification of novel targets and develop optimized, high-
quality drug candidates. SBDD, structure-based drug design.
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Figure 5. The majority of targeted therapies serve patient populations of <10,000. Circles represent precision medicines against the indicated 
target, and colors represent tumor type as shown in the legend. Source: Boston Consulting Group analysis of Decision Resources Group epidemiology, 
ClinicalTrials.gov, FDA labels, and company websites. Data were gathered for approved precision oncology assets labeled according to their biological 
target and overall response rate (ORR) vs. prevalence of the relevant metastatic cancer. In instances in which there were several assets approved with 
the same biological target, ORR was based on the drug with the strongest response. AML, acute myelogenous leukemia; BCC, basal cell carcinoma; CLL, 
chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; CRC, colorectal cancer; FL, follicular lymphoma; GIST, gastrointestinal stromal tumor; 
HCC, hepatocellular carcinoma; MCL, mantle cell lymphoma; MM, multiple myeloma; MZL, marginal zone lymphoma; NSCLC, non–small cell lung cancer; 
RCC, renal cell carcinoma; STS, soft tissue sarcoma; TGCT, tenosynovial giant cell tumor; WM, Waldenstrom macroglobulinemia.
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With these combined tools in hand, the oncology drug 
hunter now faces the challenge of choosing the right targets 
with profiles that balance the technical and commercial 
risks of oncology drug discovery. Although precision targeted 
therapies can be highly effective in small patient popula-
tions, there remains a wide area of therapeutic “white spaces” 
where exquisitely selective candidates with enhanced drug 
profiles against high-impact targets may deliver transforma-
tional patient outcomes (Fig.  5), which can be divided into 
three categories.

1. Clinically validated targets with current therapies that 
have suboptimal properties and leave significant room for 
additional patient benefit, such as from improved selectiv-
ity over anti–targets of interest or improved pharmacoki-
netic properties that expand the treatable sites or target 
coverage in patients. In NSCLC, the ALK inhibitor pro-
gression from suboptimal EML4–ALK targeting (crizotin-
ib) to more optimized compounds has yielded remarkable 
improvement in patient outcomes. KRASG12C, a previously 
“undruggable” target, has now been clinically validated by 
commercially available medicines, but newer, differenti-
ated, and potentially “best-in-class” compounds are now 
being tested in the clinic. New classes of mutant-selec-
tive PI3Kα inhibitors such as RLY-2608, LOXO-783, and 
STX-478 have now entered clinical trials (NCT05216432, 
NCT05307705, and NCT05768139, respectively). These 

inhibitors have the potential to prevent the on-target tox-
icities associated with PI3Kα inhibitors, such as alpelisib, 
that are caused by the inhibition of wild-type PI3Ka in 
normal tissues (168).

2. Classically “undruggable” targets that do not have a natu-
ral receptor pocket, which are well validated, typically with 
robust clinical cancer genetics and a preclinical functional 
genetic data package supporting a precision medicine hy-
pothesis. These include transcription factors—a large class 
of well-validated tumor vulnerabilities, such as MYC, which 
is one of the most frequently aberrantly expressed, ampli-
fied, or translocated transcription factors across a range of 
tumors. Examples include lineage-dependent transcription 
factors (with ER and AR as prime “druggable” examples) or 
emerging synthetic lethal targets.

3. Novel targets that have not been previously identified or 
validated, which nevertheless emerge from newer computa-
tional biology analysis of large datasets. These targets rep-
resent a new frontier of oncology drug discovery and, once 
validated using cell-based and animal model systems, could 
significantly expand the number of patients who can benefit 
from precision oncology. Exciting examples of these that 
have recently emerged include the GEMINI targets that in-
tegrate both cancer somatic and germline population-level 
genetics to identify targets that are synthetically lethal with 
highly frequent loss-of-heterozygosity (LOH) events in tu-
mors (169). In this article, the authors identified an essential 
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gene, the DNA primase PRIM1, which is located on a chro-
mosomal locus with high-frequency LOH events in a variety 
of tumors and which contains polymorphisms common in 
human populations. Selective targeting of one of the poly-
morphisms using allele-selective CRISPR techniques led to 
specific cell killing of patient-derived cells containing the 
targeted polymorphism, whereas patient-derived cells con-
taining the nontargeted polymorphism were unaffected. 
These experiments offer proof of concept for the potential 
to use silent polymorphisms to convert common essential 
targets to highly selective precision medicine targets.

The final challenge before the drug hunter embarks on a 
campaign against a target from one of these three categories 
is prioritization. Unlike therapeutic areas in which there is a 
dearth of validated targets and robust model systems, such 
as neurologic diseases like Alzheimer’s, the oncology field has 
benefited from the immense expansion of validated target 
space over the past 20 years. For clinically validated targets, 
one prioritization approach is to systematically and compre-
hensively map the approved therapeutic and target landscape 
for precision oncology according to the patient population 
size and the RR or PFS these existing drugs have achieved 
in patients, as shown in Fig.  5. The upper right quadrant of 
such an analysis contains highly effective therapies for large 
populations of patients with cancer. The lower left quadrant 
are therapies with minimal patient impact (overall response 
rate  <40%) in small patient populations. Low response rates 
for drugs against some of these targets may reflect tumor 
biology—such a target is simply not enough of a dependency 
in the given tumor to lead to meaningful patient responses 
regardless of how optimally the drugs inhibit the protein. 
Alternatively, these targets may represent rich opportunities 
for an integrated toolbox of drug discovery to create more 
selective, more potent drugs with improved drug metabolism 
and pharmacokinetic properties, overcoming the limitations 
of existing therapies. Similar systematic approaches can be 
applied to an investigational drug landscape, or even a pre-
clinical target landscape, mapping preclinical data, such as 
functional genetic dependency scores (universally or selectively 
in certain cell types), to prioritize targets for drug discovery. 
The various technological approaches and classification of tar-
gets described above should also be considered in the context 
of more detailed metrics that characterize overall druggability 
such as target class, protein structure, chemical tractability, 
and precedent as previously described (170).

OUTLOOK FOR PRECISION ONCOLOGY IN 
THE EVOLVING ONCOLOGY LANDSCAPE

Prior to 2000, cancer treatment had mostly relied on crude 
methods such as chemotherapy, radiation, and surgery to 
combat this aggressive disease with moderate success (171). 
The advent of the genomic era enabled the scientific com-
munity to begin using genetic targets such as BCR–ABL for 
the design of precision drugs. Thus, precision oncology was 
born in 2001 with the transformational success of imatinib in 
CML (172). In the 20 years following imatinib, we have used 
available chemistry and data science tools and emerging biol-
ogy insights to drive small-molecule designs for genetically 

defined targets. Of the 160 approved oncology drugs between 
2001 and 2021, 68% were small molecules, thus illustrating 
its relative impact. However, due to existing limitations in our 
knowledge of target biology and the absence of more recent 
chemistry and data science tools, most new compounds 
could only address targets representing rare patient popu-
lations. In addition, many compounds were characterized 
by narrow therapeutic windows due to toxicities and other 
undesired properties that could not be engineered out of the 
molecules. Cumulatively, targeted therapies are estimated to 
benefit approximately 7% of patients today (5). Despite these 
limitations, some exceptional molecules have been developed, 
such as the ALK inhibitor lorlatinib and the EGFR inhibitor 
osimertinib, both for segments of patients with NSCLC (147, 
156, 157). The disparity between the number of new drugs 
and the paucity of patient benefit can be addressed only with 
a consistent improvement of molecule designs that allow 
access to more common cancer targets and offer cleaner drug 
profiles for wider therapeutic windows. In addition, beyond 
the science of drug discovery, patient access to genetic testing 
and approved medicines must improve to maximize benefit 
in the future.

As is illustrated by the 20-year journey of targeting BCR–
ABL with imatinib and several generations of subsequent 
TKIs, patient outcomes can be incrementally improved (139), 
transforming CML into a chronic disease with about 5% 
to 10% of patients achieving treatment-free remission after 
cessation of TKI therapy (142). With an expanded toolbox 
of advanced technologies, this time window may be substan-
tially reduced for new cancer targets.

As we have summarized above, the last 20 years have brought 
an extensive evolution of our biological knowledge base and 
investigational biology tools accompanied by the introduc-
tion of novel technologies in chemistry and data science that 
now allow a more sophisticated and integrated approach to 
small-molecule drug discovery. In particular, the access to 
the full toolbox paired with the scientific skill set of trained 
drug hunters enables the integration of these tools and their 
application to the right targets. With an increased ambition 
to tailor the selectivity of the compound for the target in 
the diseased cell but not the wild-type cell, and carefully 
defined drug properties such as improved pharmacokinetic 
and pharmacodynamic profiles, next-generation small mol-
ecules may deliver the desired transformational clinical effects 
more consistently than ever before. The ambition should now 
go beyond improvements over existing drugs that have sub-
optimally addressed known targets and extend to previously 
undruggable targets and novel targets with complex biology.

Although the outlook for more precise targeted therapies 
has certainly improved, there will remain biologically relevant 
cancer targets that cannot be directly drugged even with 
novel tools such as chemical proteomics. Such targets may 
be transcription factors with cryptic pockets to address some 
mutations of p53 or the MYC oncogene, among others. The 
druggable universe the drug hunter can access has grown but 
is not indefinite.

In totality, with this integrated approach, we expect more 
frequent creation of transformational medicines for under-
served patient populations, driven by better drug profiles 
offering wider therapeutic windows, better tolerability, longer 
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duration of treatment, more efficacy, and a broader ability 
to combine new small molecules with other drug classes for 
optimized therapy and ultimate opportunities to cure disease.
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